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Bjerknes forces between small cavitation bubbles in a strong acoustic field

R. Mettin,1,* I. Akhatov,2,† U. Parlitz,1 C. D. Ohl,1 and W. Lauterborn1
1Drittes Physikalisches Institut, Universita¨t Göttingen, Bürgerstraße 42-44, D-37073 Go¨ttingen, Germany

2Ufa Branch of the Russian Academy of Sciences and Bashkir University, 6 Karl Marx Street, Ufa 450025, Russia
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The mutual interaction between small oscillating cavitation bubbles (R0,10 mm) in a strong acoustic field
~Pa.1 bar, f 520 kHz! is investigated numerically. We assume spherical symmetry and a coupling of the
bubble oscillations. Our results show that the strength and even the directions of the resulting secondary
Bjerknes forces differ considerably from predictions of the well-known linear theory. This is of immediate
consequence for understanding and modeling structure formation processes in acoustic cavitation and multi-
bubble sonoluminescence.@S1063-651X~97!01909-0#

PACS number~s!: 47.55.Bx, 47.55.Dz, 47.55.Kf, 43.25.1y
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INTRODUCTION

The mutual interaction between gas bubbles in an acou
field is a well-known phenomenon which was discovered
Bjerknes@1#. There are two physical phenomena classified
Bjerknes forces: the attraction or repulsion of single bubb
at the pressure node or antinode of a stationary sound fi
and the mutual attraction or repulsion of oscillating bubbl
However, both forces have a common cause—the radia
force set up by an acoustic pressure gradient. The force
influences the bubble due to the ‘‘primary’’~external! sound
field is calledprimary Bjerknes force, and the force between
two bubbles due to the ‘‘secondary’’ sound fields emitted
other bubbles is called thesecondary Bjerknes force@2#.

The resonancelike oscillation behavior of small bubbles
strong acoustic fields@3–6# has been investigated recent
with respect to its impact on the primary Bjerknes for
@7,8#. In this paper, we address the effects of strong nonlin
radial oscillations on the mutual interaction of two bubb
due to the secondary Bjerknes force.

After the discovery by Bjerknes, the two types of for
were investigated experimentally and theoretically by ma
authors @2,9–19#. The results concerning the seconda
Bjerknes force are summarized in the following.

Weakly driven bubbles of fixed equilibrium radiusR0
show a maximum response at their linear resonance
quency f̂ . Accordingly, for a fixed driving frequency, th
maximum response is shown by bubbles of linear resona
equilibrium radiusR̂0 . The relation between both is given b
Minnaert’s formula@20,5#, which can be approximated fo
air bubbles in water under atmospheric pressure
f̂ R̂0'3 m/s. If the driving frequency lies between the tw
linear resonance frequencies of the individual bubbles, t
will repel each other; otherwise an attractive force is pres
However, this result is based on the assumption ofharmoni-
cally oscillating spherical bubbles, which is valid only if th
pressure amplitude of the acoustic field is very small and
spacing between the two bubbles is very large.

*Electronic address: robert@physik3.gwdg.de
†Electronic address: iskander@ncan.bashkiria.su
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During the last years substantial progress has b
achieved in the development of this theory. In Refs.@15# and
@16# two coupled oscillating bubbles were considered in l
ear theory, and also for small distances. It was shown that
resonance frequencies of the two-bubble system will cha
as the bubbles approach each other, leading to a phase
between the bubble oscillations which may, in turn, chan
the sign of the mutual interaction force. In Ref.@17# the
multiple scattering of sound between the bubbles was ta
into account, also in a linear framework. It was again sho
that for bubbles which are larger than resonance size~i.e.,
whose linear resonance frequencies are smaller than the
ing frequency! the attractive force can become a repulsi
force if the bubbles come close to each other. The reason
this deviation from the standard linear theory is the fact t
when the bubbles oscillate in phase their adjacent w
move against each other, producing an additional stiffnes
the oscillations. This in turn causes the effective resona
frequencies of both bubbles to increase. When approach
the effective resonance frequency of the smaller bubble
rises above the driving frequency and the attraction chan
to repulsion.

Oguz and Prosperetti@18# investigated the interaction o
two nonlinearly oscillating bubbles. They assumed that
distance between their centers is large so that the bub
remain spherical at all times. The sizes of the bubbles c
sidered have been of the order of 100mm, the frequency of
the external sound field has been taken comparable to
linear resonance frequency of the bubbles, and the ampli
of the driving pressure did not exceed 0.5 bar. For suc
relatively small pressure amplitude the bubbles of that s
oscillate just slightly nonlinearly, but without strong co
lapse. Therefore the compressibility of the liquid is neg
gible, and the approximation of an incompressible fluid h
been used. It was shown that nonlinear effects can influe
the interaction so strongly that the sign of the force chan
compared with the prediction of the linear theory. In partic
lar, the repulsion may also appear in the case of two bub
drivenbelowtheir linear resonance frequencies. This featu
may be explained taking into account the first nonlinear re
nance where the bubble oscillation contains a strong com
nent at twice the driving frequency. The effect can be co
2924 © 1997 The American Physical Society
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56 2925BJERKNES FORCES BETWEEN SMALL CAVITATION . . .
sidered as a double-frequency driving, which might be be
resonance for the smaller bubble and above resonance fo
larger one.

A different approach was presented by Pelekasis and
mopoulos@19#. They investigated numerically the motion o
two bubbles in an incompressible liquid induced by an os
latory disturbance of the ambient pressure, taking into
count the shape deviations of the bubbles from sphericity
the driving frequency lies in the interval defined by the in
vidual breathing-mode resonance frequencies, a repulsio
the bubbles is observed. Since the magnitude of
breathing-mode frequencies depends on the distance bet
the bubbles, the sign of the interaction force may change
the bubbles come closer to each other.

In our investigation of the mutual bubble interaction w
consider coupled cavitating bubbles which remain spheri
and are therefore assumed to be not too close to each o
We suppose strong sound fields with driving pressure am
tudesPa exceeding 1 bar, which is higher than the ran
considered in all papers cited above. Such fields with
quencies in the kHz range occur, for example, in multibub
sonoluminescence experiments@21#. The strong driving
qualitatively changes the character of the bubble oscillatio
if R0 is larger than a certain value~‘‘dynamical Blake thresh-
old’’ !, surface tension is exceeded by the driving press
and a significant expansion, followed by a violent collapse
the bubble, takes place during every cycle. The bubble wa
motion is strongly anharmonic, and the heavy collapse
plies that damping by sound radiation should be taken
account when calculating the bubble radius evolution. T
response curves~normalized maximum bubble radius vs th
equilibrium radius! for this type of bubble oscillations wer
previously investigated@3,4# and used to analyze the rectifie
diffusion @6,22# and the primary Bjerknes force@8# acting on
a bubble in a strong acoustic field.

The choice of the bubble sizes considered here is m
vated by the experimental bubble size statistics of cavita
water under strong acoustic fields that is shown in Fig
~dashed line!. This distribution which is taken from Ref
@23#, was measured at the phase of the sound field whe
maximum bubble expansion occurs. It is peaked between
and 100mm. The equilibrium radius distribution~solid line!
was from these measured values using the response curv
a single bubble under strong forcing corresponding to
experimental setup in@23# ~Pa51.5 bar, f 510.5 kHz!. It
shows that the majority of the cavitating bubbles has an e
librium radiusR0 below 10mm. Thus in this paper we ana
lyze the Bjerknes forces between small bubb
(R0,10 mm) in a strong acoustic field (Pa.1 bar). The

FIG. 1. Size distribution of cavitation bubbles in water. Dash
bubble countsn vs measured~maximum! radiusRmax ~experimental
values from Ref.@23#!. Solid: recalculated equilibrium radiiR0 .
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considered driving frequencyf 520 kHz is always below the
bubbles’ linear resonance frequencies that lie above
kHz.

I. MATHEMATICAL MODEL

Let us consider two gas bubbles in a liquid driven by
stationary sound field of wavelength large compared with
radii of the bubbles and the distance between their cent
Thus both bubbles experience pressure oscillations of
same amplitude and phase. In the case when the spa
between the bubbles is large compared with their size,
may assume that the bubbles remain spherical for all t
with radii R1(t) and R2(t), respectively. Furthermore, on
can consider the motion of the liquid around the first osc
lating bubble also to be spherically symmetric. In the vicin
of an oscillating bubble the incompressible liquid appro
mation is valid@24,25#, and the velocity fieldw1(r ,t) may be
written in the form

w15
R1

2Ṙ1

r 2 . ~1!

Here r is the radial coordinate, the dot denotes the time
rivative, and the origin of the coordinate system coincid
with the center of the first bubble.

To calculate the respective pressure field, the equatio
liquid motion is used,

r
]w1

]t
1

]p1

]r
50, ~2!

wherer is the density of the liquid andp1 is the pressure in
the liquid emitted by the first bubble. We omitted the no
linear convective termw1]w1 /]r in Eq. ~2!, because it is of
the order ofr 25 and therefore much smaller than the fir
term. Substitution of Eq.~1! into Eq. ~2!, and integration,
yields the following formulas for the pressure gradient a
the pressure:

]p1

]r
52

r

r 2

d

dt
~R1

2Ṙ1!, p15
r

r

d

dt
~R1

2Ṙ1!. ~3!

It should be noted that the influence of the first bubble on
second bubble istwofold. The pressure gradient fieldis the
source of the Bjerknes force acting from the first bubble
the second, and thepressure fieldrepresents an additiona
driving pressure for the second bubble.

A bubble of volumeV254pR2
3/3 in a liquid under a pres-

sure gradient“p1 experiences a force

F1252V2“p1 . ~4!

Substituting Eq.~3! into Eq.~4!, one obtains the force of the
first bubble on the second one at distanced:

F1252V2

]p1

]r U
r 5d

er5V2

r

d2

d

dt
~R1

2Ṙ1!er

5
r

4pd2 V2

d2V1

dt2
er . ~5!

:
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2926 56METTIN, AKHATOV, PARLITZ, OHL, AND LAUTERBORN
V154pR1
3/3 is the volume of the first bubble, ander denotes

the radial unit vector.
If the bubble volumes vary periodically in time, the n

force on the second bubble is the time average ofF12 over
one period. This net radiation force acting on a neighbor
spherical bubble in a sound field is called thesecondary
Bjerknes forceFB @2#. Integrating Eq.~5! over a period of the
volume oscillations and using partial integration, one obta
the known formula for the secondary Bjerknes force,

FB5^F12&52
r

4pd2 ^V̇1V̇2&er , ~6!

where^ & denotes the time average.
We assume that the bubbles are driven by an exte

pressurepex5Pa sin(2pft). Further, we suppose that th
bubbles are far enough apart that their pressure emiss
have the effect of an additional external driving of the
neighbor without distorting each other’s sphericity. Thus
pressurep1 generated by the first bubble adds to the sin
soidal drivingpex of the second bubble.

For calculation of the bubble oscillations, we use t
model of Keller and Miksis@26# with a series expansion o
the retarded driving term@27,28#. Usingp1 from Eq.~3! and
neglecting coupling terms of order (Ri /d)(Ṙj /c) and
(Ri /d)@(d3/dt3) Rj /c#,i , j 51,2 leads to the equation o
bubble 2:

S 12
Ṙ2

c DR2R̈21S 3

2
2

Ṙ2

2cD Ṙ2
2

5
1

r
S 11

Ṙ2

c D @p2w2pstat2pex#1
R2

rc

d

dt
@p2w2pex#

2
1

d
~2Ṙ1

2R11R1
2Ṙ1!. ~7!

Here,p2w is the pressure in the liquid at the bubble wall. W
omit vapor pressure terms and assume adiabatic compre
of an ideal gas within the bubble, which yields

p2w5S pstat1
2s

R20
D S R20

R2
D 3g

2
2s

R2
2

4m

R2
Ṙ2 . ~8!

R20 is the equilibrium radius of the second bubble,pstat is the
atmospheric static pressure,g denotes the polytropic expo
nent,s is the surface tension, andm is the viscosity of the
liquid.

It is straightforward to calculate that the influence of t
pressure field of the second bubble on the first bubble is
the same form. Therefore, the equations for the oscillati
of the first bubble coincide with Eqs.~7! and ~8! for ex-
changed indices 1↔2. Thus, to calculate the seconda
Bjerknes force between two small gas bubbles in a str
acoustic field, one has to solve a coupled system of ordin
differential equations, consisting of Eqs.~7! and~8! and their
versions with exchanged indices, and use the solution in
averaging procedure@Eq. ~6!#. Furthermore, it turns out tha
the secondary Bjerknes forces of both bubbles are symm
g
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ric: ^F21&52^F12& in the same coordinate system. A pos
tive sign of ^V̇1V̇2& means attraction, a negative sign repu
sion.

Generally, there is a time delayt'd/c between an oscil-
lation of the first bubble and the action of the pressurep1 on
the second bubble at a distanced. For d'1 mm, which is a
typical distance of bubbles in structure formation@23#, the
delay timet'0.6 ms is in the range of only 1% of the driv
ing period ~f 520 kHz, T550 ms!. Nevertheless, it might
play an important role, because even a small time shift of
collapse can have a strong influence on the averaging@Eq.
~6!#. The delay effect is not in the scope of this paper, a
will be investigated elsewhere. We want to note, howev
that the symmetry of the mutual forces is in general d
stroyed if a delay is taken into account.

II. NUMERICAL RESULTS

The calculations were carried out with atmospheric sta
pressurePstat51 bar and driving frequencyf 520 kHz. The
other parameters were set toc51500 m/s,r5998 kg/m3,
s50.0725 N/m,m51023 kg/~m s!, andg51.4.

The average in Eq.~6! was calculated after transients ha
decayed. Almost all choices ofR1 , R2 , Pa , and d in this
paper led to bubble cycles of period 1, i.e., the period of
bubble oscillation equalled the driving period. Exceptio
occurred only in a few cases with one or both of the equil
rium radii between 8 and 10mm. Then the average wa
calculated with respect to the higher period which appea
No chaotic oscillations@28# were detected in the considere
parameter range.

For presentation of the results, the secondary Bjerk
force coefficientf B is used, which we define as

f B5
r

4p
^V̇1V̇2&. ~9!

The force of one bubble on the other is found by dividingf B
by d2. The sign off B indicates attraction (f B.0) or repul-
sion (f B,0) of the bubbles.

The main results are presented in Figs. 2 and 3, where
Bjerknes force coefficientsf B are shown in a grayscale cod
ing in the R10-R20 plane for different driving pressures an
distances. For better visualization, the complete symme
data are shown. In Fig. 2 the bubbles are uncoupled, i.e
very large distanced is assumed. The white regions corr
spond to repulsive forces, darker areas to attraction betw
the bubbles. It can be seen that repulsive~white! stripes form
which shift to smaller radii for increasing pressure. This ph
nomenon does not appear for weaker driving (Pa,1 bar).
For larger pressure, the following structure becomes m
and more pronounced: a plateaulike region of strong att
tive forces builds up at larger bubble sizes~dark square!. It is
separated from weak attractive regions~light gray! by the
white stripes of repulsive forces.

In Fig. 3, the alteration is shown for approaching bubbl
i.e., for increasing influence of the coupling pressure fi
between them. The main structure is preserved: A separa
into weak and strong attracting regions, accompanied b
large increase off B after the repulsive stripes, is still presen
However, the regions of repulsive forces shrink. Additio
ally, for Pa51.32 bar @Figs. 3~c! and 3~d!#, their borders
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FIG. 2. Secondary Bjerknes force coefficientf B in the R10-R20 plane for uncoupled equations, i.e., for large bubble distanced. The
planes are given for driving amplitudesPa51.04 ~a!, 1.12~b!, 1.16~c!, 1.20~d!, 1.24~e!, and 1.32 bar~f!. Repulsive forces~negativef B!
are represented by white areas. Attractive forces~positive f B! are coded in gray scales according to the bars below the figures.
bl
a

ike

n,

ble
shift slightly to larger bubble sizes. Thus, for some bub
pairs, the approach leads to inversion of the second
Bjerknes force~compare Fig. 5!.

The findings result from the underlying resonancel
e
ry
structure of the dynamical Blake threshold. For illustratio
let us consider a section of Fig. 2~f!, Pa51.32 bar, for a
constant second bubble size ofR2055 mm. The correspond-
ing main nonlinear resonance behavior of the first bub
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FIG. 3. Secondary Bjerknes force coefficientf B in theR10-R20 plane for coupled equations. Upper row: driving amplitudePa51.12 bar,
d51 mm ~a!, andd50.2 mm~b!; lower row: Pa51.32 bar,d51 mm ~c!, andd50.2 mm~d!. White area indicates negativef B , positive
values off B are coded in gray scales according to the bars below the figures.
rc

le

e
ou
b-

A
b
lin
io
io
a
s

ra

a
di

s al-

ical

i-

l
d

la-

ui-

r
in

mp
by
cal-
together with the typical dependence of the Bjerknes fo
coefficient onR10 is shown in Fig. 4.

The normalized maximum radius of the first bubb
R1 max/R10, is plotted vs its equilibrium radiusR10 in Fig.
4~a!. The different curves are results for different distanc
of the second bubble. Both bubbles are exposed to the s
field amplitude ofPa51.32 bar. The uppermost curve is o
tained for uncoupled equations~i.e., large distance!. Bubbles
smaller than about 2mm oscillate with low amplitude and
nearly sinusoidally, which is due to the surface tension.
about 2.5mm a resonancelike maximum appears. The bub
enlarges by more than a factor of 12 during a strong non
ear oscillation which shows a bouncing behavior with a v
lent collapse. For larger equilibrium radii, the rat
R1 max/R10 decreases, and a structure with smaller second
resonance maxima evolves. These secondary resonance
the reason for the pattern of squares appearing at large
in Figs. 2~a! and 2~b!.

For a closer approach of the second bubble, the m
maximum decreases and is shifted slightly to larger ra
The curve which denotes the response for a distance
e

,

s
nd

t
le
-

-

ry
are
dii

in
i.
of

d50.1 mm is dashed because the approaching bubble i
ready close to overlap with aR10510 mm bubble during
their maximum extensions, and the assumption of spher
bubbles is surely not fulfilled.~However, for bubbles of
R10,2 mm, this distance can still be considered large.! The
effect of the second bubble coming closer is obviously sim
lar to a decreasing effective driving pressure~compare
curves in Ref.@6#, Fig. 2!. This can be explained by a mutua
hindrance of the oscillations, which is similar to couple
linear in-phase oscillations@15–17#.

The magnitude of the Bjerknes force coefficientf B is very
sensitive to the bubbles’ radii. If we suppose small oscil
tionsDRi aroundRi0 , i 51 and 2, withDRi /Ri0'const, we
find a linear scaling between bubble wall velocity and eq
librium radius. Therefore, we can roughly estimate^V̇1V̇2&
being proportional toR10

3 R20
3 . This leads already in a linea

approximation to a scaling over six orders of magnitude
the considered range of bubble equilibrium sizes. The ju
in ~dynamic! bubble size by a factor of about 10, caused
the indicated resonancelike effect, means an additional s
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56 2929BJERKNES FORCES BETWEEN SMALL CAVITATION . . .
ing of six orders of magnitude. Indeed, Fig. 4~b! shows a
strong increase off B at the dynamical Blake threshold. A
the second bubble remains unchanged in this figure, the j
amounts for a factor of about 103.

It is an important result of Figs. 2 and 3 that the mutu
bubble forces are not always attracting, although the driv
frequency is always much smaller than the linear resona
frequency. The dynamical Blake threshold is accompan
by some phase shift of the bubble radius maxima a
minima, similar to a phase shift at a linear type of resonan
Therefore, we find some range of bubble sizes with repel
forces. This region contains bubble pairs with one bub
smaller~but not too small! and the other bubble larger tha
the nonlinear resonance size. The enlargement in Fig.~b!
magnifies the dashed curve (d50.1 mm) in this region. The
typical structure, which is shown also by the other curv
has two zero crossings left to the resonance maxim
bracketing the repelling region.

An approach of the second bubble has a decreasing e
on the Bjerknes force coefficient, as the oscillations beco
less strong. The repelling regions shift slightly to larger ra
and shrink, i.e., the zero crossing points become clo
@which cannot be seen in Fig. 4~b!, but in the plane view of
Figs. 3~c! and 3~d!#. The influence of the pressure field co
pling is illustrated in Fig. 5, where the radius evolution
time is shown for two bubbles of sizesR1052 mm and
R2055 mm. ForPa51.32 bar this bubble pair is close to th
border of the repelling region in theR10-R20 plane@cf. Figs.

FIG. 4. Resonancelike response and secondary Bjerknes
for Pa51.32 bar. From the uppermost to the lowermost line,
results are given for a second bubble (R2055 mm) which is located
at larged ~uncoupled!, d51, 0.6, 0.2 mm, 0.1 mm~dashed!. ~a!
Normalized maximum radiusR1 max/R10 vs the first bubble’s equi-
librium radiusR10. ~b! Bjerknes force coefficientf B . Inset: mag-
nification of f B for d50.1 mm.
p

l
g
ce
d
d
e.
g
e

,
,

ct
e

ii
er

2~f!, 3~c!, and 3~d!#. If the bubbles are far apart, oscillation
are uncoupled and we obtain the curvesI andII in Fig. 5~b!

for bubbles 1 and 2, respectively. Averaging ofV̇1V̇2 @Fig.
5~c!# yields a positive Bjerknes force coefficien
f B52.431023 mN3mm2, and thus bubbles are attractin
each other. If the bubbles approach to a distanced50.2 mm,
they oscillate as indicated by curvesIII andIV in Fig. 5~b!.
Curve IV seems identical to curveII , since the larger bub-
ble’s behavior hardly changes, but the smaller bubble is
enlarged and collapses earlier. The functionV̇1V̇2 is altered
according to Fig. 5~d!, and averaging results in a negativ
f B526.731025 mN3mm2. In this case, the pressure fie
coupling changes the effect of the secondary Bjerknes fo
from attraction to repulsion if the bubbles come close to e
other. This implies the existence of a stable equilibrium d
tance between both strongly oscillating bubbles. Howev
for most combinations of bubble sizes, a mutual appro
within the calculated range does not invert the direction
the force.

From Fig. 5 it can also be seen that the important con
butions for the net force come from the bubble wall motio
before the first heavy collapse, because the afterboun
results in fast oscillations that average to approximately ze
Thus the results should not strongly depend on the deta

ce
e

FIG. 5. Normalized driving pressurepex/pstat ~a!, and bubble
radii R1,2 ~b! vs normalized timet/T during one driving period
~Pa51.32 bar,R1052 mm, andR2055 mm!. CurvesI andII in ~b!
correspond toR1 andR2 for the uncoupled case~d large!. Curves
III andIV indicateR1 andR2 for d50.2 mm. The time-dependen
part of the average in Eq.~6!, V̇1V̇2 , is shown for the uncoupled
case@~c!, f B.0# and ford50.2 mm@~d!, f B,0#.
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2930 56METTIN, AKHATOV, PARLITZ, OHL, AND LAUTERBORN
modeling of the collapse phase of motion. Indeed, qual
tively the same results have been obtained for isother
compression of the gas (g51), for inclusion of a van der
Waals hard-core term@29#, and for the Gilmore model@30#.

III. CONCLUSION

The mutual interaction forces between two small coup
gas bubbles (R0,10 mm) in a strong low-frequency acous
tic field ~Pa.1 bar, f 520 kHz! have been investigated a
suming that the spacing between the bubbles is large eno
that the bubbles remain spherical for all times. The calcu
tions have been carried out using Keller-Miksis equatio
which are mutual coupled by bubble pressure emiss
terms. Delay effects have been neglected.

For the considered parameter values a nonlinear reso
celike response of a single bubble occurs~dynamical Blake
threshold!. This leads to secondary Bjerknes forces betwe
the bubbles that are stronger by a factor of 103– 106 than
expected from linear approximations in this driving fr
quency regime far below the bubbles’ linear resonance
quency. Additionally, the signs of the forces change near
region of the dynamical Blake threshold. This result may
explained using the well-known linear resonance of
bubble as an analogy. If the bubbles both have radii lar
~or smaller! than the resonance size, then they attract e
other. If the resonance radius~where the response curve h
a maximum! lies between the two bubble radii, then repu
sion takes place.~In contrast to the linear resonance an
ogon, very small bubbles are again attracted by larger on!
The boundaries of the such formed domains where repul
occurs change with the driving amplitude, because the n
linear resonance size of the bubble decreases with increa
pressure amplitude. The nonlinear resonance radius also
pends on the distance of the bubbles, and increases whe
,

on
,

t-

.
r-

ar
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ic

d
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n-

n

e-
e
e
e
er
h

-
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n
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bubbles approach each other. This in turn shifts the dom
of the repulsion and changes the magnitude of the Bjerk
force, resulting in an overall shrinking of repelling region
Only for some bubble pairs a mutual approach changes
sign of the force from attraction to repulsion, resulting in
stable separation distance. By far the most attracting bub
in the considered parameter regime will approach further
til nonspherical effects become important that are beyond
scope of this article.

Our findings are important for collective bubble pheno
ena in high-pressure fields such as streamer formation@5,31#
and multibubble sonoluminescence@21#, as linear modeling
may lead to severe underestimation of the mutual bub
forces or to the wrong sign. In particular, secondary Bjerkn
forces become comparable in size to primary Bjerknes for
~compare the values reported in Ref.@8#! even at consider-
ably large bubble distances. Although a stable equilibri
distance between two violently oscillating bubbles is po
sible, stable static arrangements of more than two bub
seem less likely because of the predominant attractive si
tions in parameter space. Indeed, streamer structure
strong acoustic fields incorporate dynamic arrangement
fast moving small bubbles@5,23#, which is in contrast to
static clusters of large bubbles in weak sound fields@32#.
Future investigations will address to further details
coupled bubble oscillations in strong acoustic fields, for
stance time retarded coupling and chaotic synchroniza
phenomena.
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